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Abstract

We implement a Bayesian state-space model with the dual objectives of projecting future homeless-
ness rates in each of the 50 US states and investigating the association between homelessness and a
collection of demographic and economic factors. Homelessness data is obtained from the US Depart-
ment of Housing and Urban Development, while covariates are extracted from the US Census Bureau,
the US Environmental Protection Agency, and Forbes Media data. We model fluctuations over time
via second-order random walks and temporal smoothing with P-splines, finding that the former yields
superior prediction performance on held-out data. Our final model identifies median monthly housing
cost as having a significant association with state homelessness rate.

1 Introduction
Homelessness is a major issue across the United States. According to the most recent estimates from the
US Department of Housing and Urban Development (HUD), 653,100 Americans experienced homelessness in
January 2023, the largest total since reporting began in 2007 [de Sousa et al., 2023]. States of emergency have
been declared in various jurisdictions — including Los Angeles [City of Los Angeles, 2023], Denver [Zelinger,
2023], Seattle [Daniels, 2023], and Alameda County [Brinkley, 2023] — with the aim of streamlining the
access to financial resources and the enactment of policies to respond to the crisis.

People experiencing homelessness are at higher risk for a variety of health problems and in particular are
at a higher risk of mortality [Wyse et al., 2023]. They are often subject to social stigma that blames them
for their situation, limits their ability to participate in society, and impedes their access to health care
Belcher and DeForge [2012]. Their experience is a direct violation Article 25 of the Universal Declaration of
Human Rights, which recognizes “the right to a standard of living adequate for the health and well-being
of [themselves] and of [their] family, including food, clothing, housing and medical care and necessary social
services” [United Nations General Assembly, 1948].

The objective of this work is to develop a statistical model in a Bayesian framework to identify predic-
tors associated with homelessness in the United States and to produce state-level forecasts of the rate of
homelessness in the population. We take inspiration from [Alexander et al., 2022], who develop a Bayesian
state-space model that simultaneously achieves these two objectives of identification and forecasting in the
context of the American foster care system. The above paper highlights the two primary benefits of such a
model, which translate naturally to our application. First, the identification of predictors most associated
with homelessness can give federal, state, and local governments a sense of what policies are more likely
to effectively prevent homelessness (e.g., subsidized housing, infrastructure projects, social security reform).
Second, forecasting can lead to a more informed allocation of resources (e.g., shelters, food banks) to respond
to demand.

Previous work has used survey data to identify factors affecting homelessness in youth. For example, Shelton
et al. [2009] identify those who have experienced homelessness out of the 14,888 people surveyed in the
National Longitudinal Study of Adolescent Health and employ a logistic regression model with covariates
such as childhood experiences of abuse and criminal history of the parents. Closer to our work, Byrne et al.
[2013] leverage population-level homelessness data by state and CoC (sub-state-level administrative unit
for coordinating homelessness response) from HUD to develop a log-linear hierarchical model that predicts
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homelessness at a fixed point in time based on rental cost, vacancy rate, and poverty rate, among others. In
a more recent study, Glynn and Fox [2019] use the same data — along with population data from the US
Census Bureau and rental data from Zillow — to fit a “dynamic Bayesian hierchical model for time-varying
homeless data”. They model the relationship between rent increases and increases in the homeless population
in the 25 largest US metropolitan areas.

2 Data
We combine the aforementioned annual data on homelessness by state from HUD with data from other US
government agencies (primarily the Census Bureau) on population, housing, and poverty, as well as data
compiled by Forbes on affordability. The homelessness data consists of annual Point-in-Time (PiT) estimates
of the number of people experiencing homelessness in each state from 2007 to 2023 [de Sousa et al., 2023].
Here, PiT means that estimates were made on a specific night of the given year between January 22nd and
31st. The count groups people experiencing homelessness based on whether they are sheltered, their age,
their gender, and their race.1 Counts are conducted separately by each of the 381 continuums of care (CoCs).
The CoCs are granted a degree of flexibility with regards to the methodology, but a national standard is set
by HUD. This standard permits counting unsheltered individuals by sending enumerators to cover the CoC’s
entire area, by covering only “known locations where people who are unsheltered are located at night”, or by
taking a random sample of areas within the CoC and extrapolating [United States Department of Housing
and Urban Development, 2014]. Sheltered counts can similarly be conducted via census or random sample
and extrapolation, but these have the added benefit of exploiting the Homeless Management Information
System (HMIS), which many shelters participate in and whose data conforms to HUD’s standards.

Both due to the methodological discrepancies outlined above and the difficulty of conducting a count in
a single night, these counts — especially the unsheltered counts — are likely to be underestimates. This
is most pronounced in 2021 and 2022, when the COVID-19 pandemic forced shelters to implement social
distancing measures or close altogether. Additionally, the data contains artifacts such as when in 2023, 22
CoCs did not conduct an unsheltered count in 2023 and used the count from 2022 [de Sousa et al., 2023].

We obtain population estimates for July 1st of each year from the US Census Bureau (USCB), which we
use to calculate homelessness rate — our dependent variable of interest — the proportion of the population
experiencing homelessness. The population counts from the census years of 2010 and 2020 are the most
reliable, while intercensal estimates leverage vital registration systems for birth and death count estimation,
income tax, medicare, and social security data for intra-US migration, the American Community Survey
(ACS) for immigration, and registries of other countries for emigration estimation [United States Census
Bureau, 2023]. Additionally, we incorporate estimates of the proportion of the population in living in urban
areas by state during each of the census years. The USCB currently dictates that an urban area “must
encompass at least 2000 housing units or at least 5000 people”, in addition to a set of density requirements
[United States Census Bureau, 2020]. However, it is worth noting that the criteria in the 2010 Census were
stricter. Furthermore, to incorporate population density as a covariate, we obtain the land area of each
state from the USCB. The choice of these two covariates is motivated by the often-made assumption that
homelessness is primarily an issue in large cities, a notion that has increasingly been refuted in recent years
[Meehan, 2019].

Our remaining covariates are economic indicators which naturally lead to an analysis of homelessness through
the lens of availability of affordable housing. We incorporate annual data on the poverty rate (only available
until 2022) and gross vacancy rate (across all housing units) by state from the USCB. The poverty threshold
increases from year to year and is dependent on age, family size, and number of children (but not on state).
For example, the poverty threshold in 2022 for an individual under the age of 65 living on their own was
15,225 USD. Lastly, we consider data compiled by Forbes on median monthly housing cost in 2021 (adjusted
to 2023 USD) and cost of living in 2023 [Rothstein and Jennings, 2024]. The former is sourced to the USCB

1For our purposes we only consider the total count for each state. We were unable to easily extract data on state population
by age, race, and gender from the US Census Bureau’s interface. Incorporating these categories into our hierarchical models is
an interesting avenue for future work.
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(though we were unable to recover the original data) and the latter is an aggregation of data from the Council
for Community and Economic Research (C2ER), KFF, the MIT Living Wage Calculator, and the USCB.

Unfortunately, the Forbes datasets do not account for the District of Columbia (which is not a state but is
treated equivalently by the USCB). It is worth noting that DC is anomalous in several ways. Its population
density (which peaked in 2019 with over 10,000 people per square mile) is almost an order of magnitude
larger than any of the states (New Jersey had a density of 1065 people per square mile in 2023), and its
entire area is urban. In 2016, its homelessness rate was more than twice as high as any of the states. We
elect to filter out DC from our data and focus on the 50 states.

In Figure 1, we observe interesting patterns when plotting the evolution of the homelessness rate for the 50
states. While trends for individual states vary, it is noteworthy that states within the same region generally
exhibit similar trends. All of the southern states saw a steady decline in the homelessness rate during the
2010s. On the other hand, the states on the Pacific coast of the mainland have seen steady increases since the
mid-2010s interrupted only by a large drop in 2021. This drop can be explained both by the aforementioned
changes in the policies of homeless shelter and “ the strengthening of safety net programs, income protections,
and eviction moratoria” during the COVID-19 pandemic [de Sousa et al., 2023]. Because of this, we choose
to treat 2021 as an anomaly and do not input the homelessness rate from that year into our models (though
we do keep the covariates for that year). Indeed, the time series models introduced in the next section display
a much improved fit to the data when we treat the 2021 rates as missing and interpolate. In 2022 and 2023,
the Pacific states returned to their pre-pandemic trend. Meanwhile, two northeastern states — Vermont
and New York — exhibit substantial post-pandemic spikes. Vermont’s public news agency highlights “[an]
extremely tight housing market[,] soaring rents, the end of the pandemic-era eviction ban[, and] the tightening
of eligibility for Vermont’s emergency hotel housing program” as the key contributing factors [Elder-Connors,
2023]. Meanwhile, New York City has attributed a marked increase in homelessness from 2022 to 2023 to a
large influx of asylum seekers sent to the city by the State of Texas [Office of the New York City Comptroller
Brad Lander, 2023]. For easier visualization of the above-mentioned points, we also include a plot for a
selection of six states in Figure 2.
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Figure 1: The evolution of homelessness rate by state for the years HUD has collected data (2007-2023).

In investigating the correlation between our covariates (Figure 3), we find a near-perfect positive correlation
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Figure 2: The evolution of homelessness rate in select states, 2007-2023.

(0.956) between median monthly housing cost and cost of living. We also observe notable correlations
between urban proportion and population density, housing cost, and vacancy rate (0.512, 0.682, and -0.448
respectively). This motivates us to drop cost of living and urban proportion in our models. Of the four
covariates that remain, only median monthly housing cost exhibits a noticeable association with homelessness
rate in our exploratory data analysis. We plot this association in Figure 4.

3 Method
We implement a Bayesian state space model similar to the one in Alexander et al. [2022]. This class of
model is designed to simultaneously handle responses and covariates that vary with time and is naturally
suited to hierarchical modelling. The first point has a caveat in our case. Though all of our covariates
are time-dependent, three of them are only available for specific years (urban proportion in 2010 and 2020,
housing cost in 2021, and cost of living in 2023). Having eliminated two of these during our exploratory
data analysis, we treat the remaining one — median housing cost — as time-independent. As for the second
point, hierarchical modelling is particularly useful since we have a relatively small dataset (50 states and
17 years per state). We find that pooling states by region (the UCSB defines four regions: West, South,
Northeast, Midwest) leads to better convergence of the posterior sampler (as measured by effective sample
size and the Gelman-Rubin diagnostic �̂�). Moreover, this pooling is very natural given the observation in
our EDA that states within the same region tend to exhibit similar trends.

We model the natural logarithm of the homelessness rate in a given state and year (𝑦𝑠,𝑡) as a normal
random variable with mean (𝜇𝑠,𝑡) parametrized as a combination of a state-specific intercept (𝛼𝑠), a linear
combination of the time-dependent covariates with time-varying slopes (𝑥𝑇

𝑠,𝑡𝛽𝑡), a linear combination of the
time-independent covariates (𝑧𝑇

𝑠 𝛾), and a state and time dependent fluctuation term (𝜀𝑠,𝑡). We place second-
order random walk priors on the time-dependent coefficients 𝛽 and the state-time fluctuation terms 𝜀. We
briefly attempted having separate 𝛽 coefficients for each region, but the resulting sampler did not converge.
We model variances hierarchically, grouping states by region as in Alexander et al. [2022]. We denote the
region of a state 𝑠 by 𝑟(𝑠). We write the full model specification below:

log 𝑦𝑠,𝑡 ∼ 𝒩(𝜇𝑠,𝑡, 𝜎2
𝑦,𝑟(𝑠))

𝜇𝑠,𝑡 ∼ 𝛼𝑠 + 𝑥𝑇
𝑠,𝑡𝛽𝑡 + 𝑧𝑇

𝑠 𝛾 + 𝜀𝑠,𝑡
𝛼𝑠 ∼ 𝒩(𝜇𝛼,𝑟(𝑠), 𝜎2

𝛼,𝑟(𝑠))
𝜇𝛼 ∼ 𝒩(𝜆𝜇𝛼

, 𝜏2
𝜇𝛼

)
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Figure 3: Pairs plot of the covariates under consideration. Cost of living is in tens of thousands of 2023 US
dollars.
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Figure 4: Plot of homelessness rate (in 2020) against median monthly housing cost (in 2021, reported in 2023
USD). We plot the response for 2020 instead of 2021 due to the aforementioned underreporting. 𝑅2 = 0.41.
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log 𝜎𝛼 ∼ 𝒩(𝜈𝜎𝛼
, 𝜏2

𝜎𝛼
)

𝛽1,𝑘 ∼ 𝒩(0, 𝜎2
𝛽,𝑘)

𝛽2,𝑘 ∼ 𝒩(𝛽1,𝑘, 𝜎2
𝛽,𝑘)

𝛽𝑡,𝑘 ∼ 𝒩(2𝛽𝑡−1,𝑘 − 𝛽𝑡−2,𝑘, 𝜎2
𝛽,𝑘) for 𝑡 > 3

log 𝜎𝛽 ∼ 𝒩(𝜈𝜎𝛽
, 𝜏2

𝜎𝛽
)

𝛾 ∼ 𝒩(𝜇𝛾, 𝜎2
𝛾)

𝜀1,𝑠 ∼ 𝒩(0, 𝜎2
𝜀,𝑟(𝑠))

𝜀2,𝑠 ∼ 𝒩(𝜀1,𝑠, 𝜎2
𝜀,𝑟(𝑠))

𝜀𝑡,𝑠 ∼ 𝒩(2𝜀𝑡−1,𝑠 − 𝜀𝑡−2,𝑠, 𝜎2
𝜀,𝑟(𝑠)) for 𝑡 > 3

log 𝜎𝜀 ∼ 𝒩(𝜈𝜎𝜀
, 𝜏2

𝜎𝜀
)

log 𝜎𝑦 ∼ 𝒩(𝜈𝜎𝑦
, 𝜏2

𝜎𝑦
)

𝜆𝜇𝛼
∼ 𝒩(−6, 1)

𝜈, 𝜇𝛾 ∼ 𝒩(0, 1)
𝜏, 𝜎𝛾 ∼ 𝒩+(0, 1).

The choice of the 𝒩(−6, 1) prior for 𝜆𝜇𝛼
is motivated by the observation that state homelessness rates tend to

be between 𝑒−7 ≈ 0.0009 and 𝑒−5 ≈ 0.0067. We observe better convergence compared to the less informative
𝒩(0, 1) prior.

We additionally consider temporal smoothing with P-splines as an alternative to the second-order random
walk prior on the state-time fluctuations. In this setting, we model 𝜀𝑠,𝑡 as a linear combination of cubic
B-spline basis functions evaluated at 𝑡. Then, the spline coefficients — instead of the fluctuations themselves

— are modelled as a second-order random walk over knot points. That is, letting 𝐽 denote the number of
knots in the spline basis2 and {𝐵𝑗}𝐽

𝑗=1 denote the cubic spline basis functions, we model

𝜀𝑠,𝑡 =
𝐽

∑
𝑗=1

𝜂𝑠,𝑗𝐵𝑗(𝑡)

𝜂𝑠,𝑗 ∼ 𝒩(2𝜂𝑠,𝑗−1 − 𝜂𝑠,𝑗−2, 𝜎2
𝜂,𝑟(𝑠))

log 𝜎𝜂,𝑠 ∼ 𝒩(𝜈𝜎𝜂
, 𝜏2

𝜎𝜂
)

𝜈𝜎𝜂
∼ 𝒩(0, 1)

𝜏𝜎𝜂
∼ 𝒩+(0, 1).

We fit all models using Stan, which runs a variant of Hamiltonian Monte Carlo (HMC) to sample from the
joint posterior distribution of the model parameters. For each model, we run 4 chains with 1000 warmup
iterations and 1000 sampling iterations. We take particular interest in the marginal posterior of the means
𝜇𝑠,𝑡 (since this is the logarithm of our prediction for state 𝑠 at time 𝑡) and of the coefficients 𝛽𝑡 and 𝛾 (for
the two models with covariates). As such, we report the smallest effective sample size across these three sets
of parameters. We also report the largest Gelman-Rubin diagnostic �̂� observed across all parameters and
generated quantities to measure the mixing of the four chains. We also investigated trace plots of parameters
with large �̂�, but we omit these from this report for the sake of brevity (and since we were able to achieve
�̂� < 1.05 for all four models).

Recalling our goal of interpretation, we consider the 95% credible intervals of the parameters 𝛽 and 𝛾 for
our models with covariates to conclude whether a significant (linear) interaction exists between covariates
and the (log) homelessness rate. As for our goal of projection, to generate predictions 𝑒𝜇𝑠,𝑡 for future years,

2We take evenly spaced knots with a spacing of 2.5 years.
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we leverage the random walk priors on time-dependent parameters. As in Alexander et al. [2022], we take
a three-year rolling average of time-dependent covariates. We fit our models on the data from 2007 to
2022 (excluding 2021) and project forward five years. We compare models quantitatively via the mean
squared prediction error on the 2023 data. We perform a qualitative comparison by inspecting the posterior
distribution of 𝑒𝜇𝑠,𝑡 , with the aim of identifying the model that smoothly fits the data from 2007 to 2022
(i.e., does not overfit) and exhibits the lowest variance in its projections.

4 Results
We summarize our main quantitative results in Table 1. As mentioned in the previous section, we observe
�̂� < 1.05 for all models, indicating satisfactory mixing of the Markov chains in the posterior sampler.
Effective sample size is lower for the two models with covariates (perhaps since these models have a larger
number of parameters than the no-covariate baselines), indicating greater uncertainty in our parameter
estimates. This is most pronounced for the spline model (lowest ESS of 101 with all covariates, compared to
455 without covariates). Of the four models, the random walk model with all covariates achieves the lowest
prediction error on the 2023 data (MSE 1.995 × 10−5), followed by its counterpart without covariates (MSE
2.322 × 10−5). The two spline models lag far behind.

Method ESS �̂� Validation MSE × 10−5

Random Walk, No Covariates 413 1.034 2.322
Spline, No Covariates 455 1.017 5.468

Random Walk, All Covariates 323 1.024 1.995
Spline, All Covariates 101 1.030 3.975

Table 1: Summary of quantitative diagnostics and prediction performance for all four models. ESS denotes
the smallest effective sample size across the posterior means 𝜇𝑠,𝑡 and the coefficients 𝛽𝑡 and 𝛾 (where applica-
ble), �̂� denotes the largest Gelman-Rubin diagnostic across all parameters, and validation MSE is measured
on the 2023 data.

Focusing on the random walk model with all covariates due to its lower prediction error and lower estimation
uncertainty, we list the 95% credible intervals for significant coefficients in Table 2. The coefficient for the
median housing cost covariate, 𝛾, stands out as indicating a significant positive association with our response.
This is expected from our EDA (recall Figure 4). Moreover, the coefficient for the poverty rate covariate
is significant only for select years (2010, 2011, 2013, 2021, 2022) and the coefficient for the vacancy rate is
significant in 2022 only. The coefficient for population density is never significant.

Coefficient 95% Credible Interval
𝛽2010,poverty (0.0029, 0.0667)
𝛽2011,poverty (0.0009, 0.0644)
𝛽2013,vacancy (0.0001, 0.0938)
𝛽2021,vacancy (0.0010, 0.1984)
𝛽2022,vacancy (0.0664, 0.3049)
𝛽2022,poverty (-0.1950,-0.0074)

𝛾 (0.1382, 0.4011)

Table 2: List of the 95% credible intervals that do not overlap with zero for parameters 𝛽 and 𝛾 in the
random walk model with all covariates.

Next, our visual inspection of the posterior distribution of exp(𝜇𝑠,𝑡) on the same selection of states as in
Figure 2 leads us to conclude that all models behave similarly on the data that they are fitted to (i.e, from
2007 to 2022). See Figure 5 for an illustration. Interestingly, this distribution is much more concentrated
around its mean for the two southern states (Florida and Louisiana), though we suspect that this is due to
their relatively low homelessness rate compared to the others. The spline model appears slightly less sensitive
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to outliers compared to the random walk model. In the case of Louisiana in 2009 and 2010, the random walk
model overcompensates for a rate spike in these years while the spline model displays a smoother trend.
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(a) Random walk model with covariates
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(b) Spline model with covariates

Figure 5: Illustration of model fits for a selection of six states. The fits without covariates are similar. Points
indicate the true data, lines indicate posterior mean predicted homelessness rate, and ribbons indicate 95%
credible intervals for this posterior.

When it comes to forecasting five years in the future, due to the nature of the second-order random walk (be
it on the state-time fluctuations directly or on the spline coefficients), the models simply project forward the
most recent observed trend (i.e., between 2020 and 2022). This proves to be problematic for states such as
Vermont and Louisiana that saw a spike in homelessness rate during this period. For these states, the models
project sharp increases and large ranges of uncertainty (see Figure 6). These increases are even sharper for
the models with covariates compared to those without. This is because of the random walk on the slopes 𝛽.
Changes in these slopes are amplified by the second-order random walk when projecting forward. Thus, these
coefficients — all of which are insignificant in most years — can factor substantially into the predictions (see
Figure 7). On the other hand, in Figure 8, we remove Vermont and Louisiana, observing a more reasonable
projection for the remaining states where the change from 2020 to 2022 was less dramatic. For the sake of
brevity, we only show the plots for the random walk models, but the observations for the spline models are
the same.

0.00

0.02

0.04

2010 2015 2020 2025
Year

H
om

el
es

sn
es

s 
R

at
e

state

California

Florida

Louisiana

New York

Vermont

Washington

(a) Random walk model without covariates
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(b) Random walk model with covariates

Figure 6: Illustration of model fits (2007-2022) and projections (2023-2027) on a selection of states for the
two random walk models.

Since the time-dependent coefficients 𝛽 are insignificant in the majority of years, this motivates us to fit a
fifth model: a random walk model that keeps only the time-independent covariate (median monthly housing
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Figure 7: Evolution of the slopes for the time-dependent covariates in the random walk model with covariates.
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Figure 8: Illustration of model fits (2007-2022) and projections (2023-2027) on a selection of states (excluding
Vermont and Louisiana) for the two random walk models.
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cost), the coefficient of which was found to be significant. This model has a minimum effective sample size
of 545, a maximum �̂� of 1.028, and a validation MSE of 2.243 × 10−5, which lies in between the MSE for the
random walk model with covariates and the one without. The plot of its fit to the data from 2007 to 2022
and its projections from 2023 to 2027 appears indistinguishable from the plot for the random walk model
without covariates, so we omit it.

5 Discussion
Of the five models that we fit in this project, the random walk model with all covariates appears to be
best based on its validation MSE. However, its projections of the homelessness rate — particularly in the
case of Vermont and Louisiana — grow unreasonably fast in part due to undesirable behaviour from its
time-dependent coefficients. Because of this, we maintain that the random walk model that retains only the
median monthly housing cost covariate is best. Indeed, this is the only covariate that we can definitively
conclude has a significant association with homelessness rate. While this association is natural and expected,
it is interesting to note that according to our model, the availability of housing (reflected by the vacancy rate)
is not (consistently) significant once we account for cost. In other words, the bigger roadblock in addressing
homelessness is not the lack of housing, but rather the unaffordability of the housing that is available. The
lack of significance for the poverty rate covariate is unsurprising since the poverty line is constant across
states and does not account for differences in cost of living. The credible intervals of the slope for population
density overlap with zero in all years, reinforcing the notion that homelessness is not a primarily urban issue.

The projections generated by our chosen best model should be taken with a substantial grain of salt. The
lack of significant time-dependent covariates leaves the projections as nothing more than the natural extrap-
olation of the most recent trend. The situation could perhaps be improved with a higher-order random walk,
but ultimately, in order to make a more informed forecast, we require more covariates. IPUMS3 hosts an
extensive archive of detailed data from the decennial US census and the annual American Community Sur-
vey. Unfortunately, storing and manipulating the very large datasets from this resource may require more
computational resources than are at our disposal. With that said, covariates that could be considered in
future work include health insurance coverage rate (since for uninsured individuals, healthcare expenses must
be accounted for in addition to other necessities like housing), high school graduation rate, unemployment
rate, inflation rate, median disposable income, median income tax rate, the governing party in each of the
executive and legislative branches (as this influences homelessness policy), and weather (including tempera-
ture, precipitation, and frequency of natural disasters such as wildfires, floods, and hurricanes). Moreover,
recall that the HUD PiT counts are grouped by sheltered/unsheltered status, age, gender, and race. Hence,
it is natural to extend our hierarchical model to account for these groupings. We could for instance have a
common prior across the coefficients for each gender and a first-order random walk prior on age groups.
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